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ARTICLE INFO ABSTRACT

Keywords: Mechanical systems with feedback control commonly contain time delays which usually tend to destabilise
Delay the system. With increasing accuracy requirements of data acquisition and calculation, investigation of the
Vehicle lateral stability effect of the feedback delay including the computational time, actuating time, and signalling time is crucial
Phase plane analysis for developing advanced chassis control. A 2-dimensional vehicle handling model with feedback control torque

Stability chart L. . . s . .
Oati;r:i:efi Ca;mml is introduced to analyse the dynamics of vehicle stability control system. A revised version of the PAC-2002
Glpob al stability tyre model is used to create two qualitatively different steering characteristics by tuning the contact friction

coefficients at the front and rear wheels. The stability charts in the space of the control gains are constructed.
In understeer and oversteer cases, the control gains are optimised to achieve the fastest settling signals against
small perturbations. While the optimised gains provide global stability of the cornering manoeuvres in the
oversteer case, the gains should be further tuned in the understeer case to ensure fast settling signals and also

global stability. The optimisation procedure is presented for various realistic time delays.

1. Introduction

When time delay occurs in mechanical systems, the rate of change
of state variables is determined by both past and present state vari-
ables (Insperger and Stepan, 2011). Vehicle, as a typical integrated
complex system, also cannot avoid the existence of various types of time
delays. In the dynamics of vehicle handling, time delays are mainly
caused by the reaction delay of the human driver, the time lag in the
steering assembly, and the propagation of the transient deformation
appearing in the elastic tyre-road contact. These delays lead to various
stability problems in cornering manoeuvrability (Rossa and Mastinu,
2017), in high-speed steerability (Wu et al., 2019), in traffic jam
formation (Orosz and Stepan, 2006; Sipahi et al., 2008), and even in
inducing wheel shimmy (Takacs and Stepan, 2012).

Vehicles are equipped with more and more active and intelligent
controls to reduce the risk of accidents and to save lives (Olofsson
and Nielsen, 2021), but the time delays existing in the control loops
still weaken the global performance of these systems and may even
carry safety concerns as shown in the analyses of longitudinal force
control (Horvath et al., 2021), automated vehicle steering control (Oh
et al.,, 2021; Varszegi et al., 2019), drifting control for path follow-
ing (Goh et al., 2019), and lane-keeping control (Xu et al., 2021).

To analyse such delayed systems, the characterisation of their local
behaviour around a desired position or a desired path is required, and
the results can be summarised in stability charts presenting the stability
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of the linearised system in the space of selected system parameters (Hu
and Wang, 2002). This provides a useful tool to optimise the control
parameters in the presence of time delays and to support the practical
process of tuning the gains.

Vehicle stability control systems that typically employ feedback
control require the acquisition of real-time vehicle state (Singh et al.,
2018). Today’s stability control systems based on the direct-yaw-
moment control theory, such as ESC (Electronic stability control) and
ABS (Anti-lock braking system), activate the torque control when the
controlled state exceeds a certain threshold (Takahashi et al., 2012).
Some time delay always appears in such activation processes. Advanced
chassis stability control systems, especially in intelligent and unmanned
vehicles, require high accuracy and additional parameters in vehicle
state estimations to enhance safety, that include, for example, tyre force
estimation and/or road profile estimation. With the implementation
of these sophisticated high dimensional vehicle models (Zhao et al.,
2018) and non-linear tyre models (Acosta et al., 2018), or with the
applied complex algorithms like the non-linear Kalman filter (Nam
et al., 2011) and non-linear observers (Chen et al., 2014), relatively
large delay is generated in the process due to the high computational
costs. Apart from these computational costs, the signalling time of the
sensors and the actuating time of the mechanical actuators are also non-
negligible in real engineering applications (Patole et al., 2017; Sridhar
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Fig. 1. Vehicle handling model considering yaw and lateral side-slip.

et al., 2021; Miller and Cebon, 2013), and consequently, they should
be considered and identified when developing a system in practice.

In simulations, time delay is often incorporated in the filtering up-
date or in the observation process while the optimisation of the control
parameters takes place iteratively (Pi et al., 2011; Verma et al., 2015;
Doumiati et al., 2011). Nevertheless, the global asymptotic stability of
the closed-loop system has to be ensured even in the presence of time
delays. In the space of the control parameters, the so-called stability
charts can take into account the effects of the time delays, and conse-
quently, they support the optimisation process and the corresponding
tuning of the gains during the development of advanced chassis control
systems.

This paper investigates a classical proportional feedback torque con-
troller (Lugner, 2019) in Vehicle Stability Control (VSC) as an example
to show the effect of time delay. Two different steering characteristics,
understeer and oversteer, are considered in comparison. For small
perturbations, the ¢-optimisation is conducted to select the gains for the
fastest settling signals by extending the previous results in Boussaada
et al. (2020) and Wang and Wang (2017), while for large perturbations,
the optimisation is conducted to guarantee also the global stability of
the system. Numerical simulations are carried out with the optimised
control gains in order to check the local and global dynamic behaviour
of the controlled system by means of inspecting the time history of the
state variables and also by analysing the phase plane structure. Finally,
the concluding section summarises the main contributions.

2. Dynamic model of vehicle handling

The governing equations are based on a single track vehicle model,
which is also called bicycle model. Two coordinate systems are used,
the ground fixed (X,Y,Z) and the local (x,y,z) that is fixed to the
vehicle as shown in Fig. 1. The vehicle is considered to be rigid with
the steering angle 6 fixed in time. The vehicle motion is characterised
by the velocity vector U of its centre of gravity CG, where its lateral
component is the state variable v, while the longitudinal component u
is constrained to be constant; the other state variable is the yaw rate r
about the vertical axis Z.

2.1. Vehicle model

Fig. 1 presents the mechanical model in question. The vehicle mass
is denoted by m, and the mass moment of inertia w.r.t the Z axis at

Table 1
Tested vehicle parameters.

Parameter Symbol Value Unit
Vehicle mass m 1475 kg
Yaw inertia I, 2400 kg m?
Distance from COG to front axle a 1.206 m
Distance from COG to rear axle b 1.434 m
Wheel base i 2.640 m

CG is I,. The distances from CG to the front and rear axles are given
by a and b, respectively. The input steering angle § is measured at the
front axle relative to the vehicle body. The front and rear lateral tyre-
ground interaction forces are denoted by F;, and F,,, respectively. The
equations of motion assume the form Pacejka (2005):

0= L (ny(af)cosé + Fry(ar)) —ur,

m
L1 M
=1 (aFg (ag)cos 6 — bF, (a,)) .
The tyre-ground kinematic relations define the corresponding tyre side
slip angles:

a =5—arctan(u> , = —arctan(u_—br> R (2)
u u

which are used to calculate the lateral tyre forces F;, and F,, with
the help of an appropriate tyre model to be presented in the next
subsection. The parameters listed in Table 1 are taken from a classical
urban SUV car.

2.2. Modelling tyre force

Modelling the elastic tyre forces is always a crucial part of vehicle
dynamics due to its strong nonlinearity generated at the tyre-road
interaction. The so-called Magic Formula tyre model, put forward by
Pacejka in 1989, is considered for modelling tyre-road interaction
forces in applications (Pacejka, 2005). Its latest version, the PAC-2002
tyre model (Kuiper and Van Oosten, 2007) is applied in this paper to
calculate the lateral forces:

F,=D, sin(Cy arctan(B,a — E,(B,a — arctan(Bya)))) . 3

The detailed definitions and explanations of the coefficients are listed
in Appendix together with the identified value of tyre parameters (see
Table 2 in Appendix).
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The vertical load F, is calculated for the front and rear axles
separately, and these are assumed to be the constant values

b
= mg. Fo=Ims. )
that is, the dynamic load transfer effect is neglected here. The tyre char-
acteristic data were acquired through MTS Flat-Trac CT experiments for
the tyre Giti 225/55R18 98v, and then they were fitted into the tyre
model through genetic optimisation algorithm that finally presented the
required parameters in Table 2.

Fy

3. Delayed feedback control of cornering manoeuvres

As it is discussed in the literature (see, for example, Lugner, 2019),
in understeer cases, perturbations lead to the loss of grip force at the
front wheel first: the yaw rate of the vehicle decreases due to the lack
of the balance of the front and rear grip forces, while the body lateral
speed does not change much:

vrR VR0, e, =v-1y=0,
(5)
ro>r>0, e.=r—ry<0,

where e, and e, denote the corresponding state errors.

For oversteer cases, the perturbations result in the loss of the rear
grip force first, which leads to an excessive body yaw rate that also
gives in return an increased (negative) body lateral speed:

v<yyr0, e, =v-1y<0,
©
r>rg>0, e.=r—ry>0.

To avoid these situations, recent chassis stability control systems
such as ESC or VSC aim to keep the vehicle in a desired stable state and
generate an appropriate dynamic response to the driver’s inputs by in-
dividually braking the specific left and right wheels, and consequently,
producing an additional yaw moment.

In the bicycle model, this yaw moment is taken into account by
means of the classical feedback torque controller with proportional
gains K, and K, over the state errors e, and e,, respectively, in the
form

M, (t) = K,(v(t —7) —vy) — K. (r(t = 7) — 1), @)

where the unavoidable time delay z also appears in the feedback
control loop for the practical reasons explained in the Introduction.
In order to complete the mathematical model, the control torque (7)
should appear on the right-hand-side of the second equation of the
governing Egs. (1).

4. Dynamics of delayed stability control for lane-keeping with
small steering angles

In this section, the vehicle model in (1) is completely linearised by
assuming small steering angle as in case of lane-keeping, and the tyre
forces are also linearised for small side slip angles as they follow the
linear relation

Fpy = Crag, F,=Ca, ()]

with cornering stiffnesses C; = K;,, C; = K,, obtained from (3) and
(A.5) (see Appendix). Accordingly, the linearisation of the equations
of motions (1) results in
C + C, Cia—C.b
mo+ —— ¢ & v bt it )
u u
Cia®> +C.p>  Cra—C,b
r+

u

+ (mu + r=Cié,
9

I+

v==Cpaé.

In steady-state steering of this linear model, the steering characteristics
are determined by
Ca-Cb>0 =
Ca—-Cb<0 =

oversteer ,
(10)
understeer .
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as already derived in Pacejka (2005) and Rossa et al. (2012).
When the input § and u are given constant values, the trivial
solutions assume the form

CC,lu
rg = 3 > 5,
C;C,I2 - (Cra — C,b)ymu an
(C¢C.1b — mu*Cra)u
Uo

" GC,I2 — mud(Cea — C,b)

In order to investigate the stability around this equilibrium, the small
perturbations &(r) = v(t) — vy and 5(t) = r(t) — ry are introduced and
substituted into the equation of motion (9) resulting

x(1) = Ax(¢), 12)
where x = [£ 4|7, and the coefficient matrix assumes the form
G +C, L Ga-Gb
um um
A=—lCa-Cb Ca+Ch |- 3)
ul ul

z z
The stability of the trivial solutions is determined by the eigenvalues
4; (j = 1,2) of the coefficient matrix A. These satisfy the characteristic

equation

2 —byA+cy=0, a4)
where b, = TrA is easily found to be negative and
C;C,I? Cra—-C.b
co=detA=f—r<1—mu2L). (15)
I,mu? C;C, 12

According to the Routh-Hurwitz criterion, the steady-state motion is
exponentially stable if and only if b, < 0 and ¢, > 0. The first condition
always fulfils, while regarding the second condition, there exists a
critical speed limit u . for oversteered vehicles leading to the loss of
stability, that is, when

- cC.2 a6
4t =\ nCra=-Cb)

One can show that the steady-state motion is always stable locally in
understeer cases.

By including the linear delayed control torque (7), the completely
linearised system can be rewritten in the form of a delay differential
equation (DDE):
m[)(t)+¥v(t) + (mu+ @)r(r) =8,

a7

C;a® + C,b? Cra—C,b
A D
u u

1)+ (1) + (t) =
Crad + K, (v(t — 7) — vg) = K (r(t = 7) = 1),

where both the tyre model and the vehicle model are linearised.
4.1. Stability criterion for the completely linearised model with delay effect

The equilibrium point (11) of the system is not affected by con-
troller (7). Then the governing Egs. (17) assume the form of linear
autonomous DDEs :

x(t) = Ax(?) + Bx(t — 1), (18)

where the coefficient matrix A = [g; ;1 (,j = 1,2) remains the same as
in (13), while

K K
=0 ¢ with k, = =%, k, = —. 19
k, -k, I, I,

The characteristic equation is obtained from
det(AI — A — Be™*7), (20)
which gives

D(A) := A% = byA — (ay k, + ajoky, — Ak )e ™ +¢, =0, (21)
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Fig. 2. The stability chart for control gains in a completely linearised model of understeer vehicle with longitudinal speed u = 35 m/s showing the number of unstable characteristic
roots with various (even unrealistic) time delays 7: (a) Os, (b) 0.1s, (¢) 0.2s, (d) 0.5s, (e) 1s, (f) 5s. Shadowed areas indicate stable domains. Red lines refer to static loss of
stability, black lines refer to dynamic loss of stability. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The stability chart for control gains in a completely linearised model of oversteer vehicle with longitudinal speed u = 35 m/s showing the number of unstable characteristic
roots with various time delays z: (a) Os, (b) 0.1s, (c) 0.2, (d) 0.3s, (e) 0.5s, (f) 0.7s. Shadowed areas indicate stable domains. Red lines refer to static loss of stability, black lines
refer to dynamic loss of stability. No stable parameter region exists for time delays larger than the critical delay 7., = 0.691s. (For interpretation of the references to colour in this

figure legend, the reader is referred to the web version of this article.)

where by = Tr A <0 and ¢, = det A are taken from (15).

As opposed to the characteristic polynomial (14) of the uncontrolled
system, this characteristic equation D(1) = 0 in (21) has infinitely
many characteristic roots 4 in the complex plane, and the necessary
and sufficient condition of exponential stability is that all of them have
negative real parts (see, e.g., in Breda et al. (2014)).

The so-called stability charts are constructed in the plane of certain
system parameters that will be the control gains k, and k, in the present

case. By means of the D-subdivision method (Sipahi, 2019), the D-
curves (or transition curves) can be determined in the parameter plane,
and the number of characteristic roots with positive real parts can be
identified in the corresponding domains bounded by these curves. In
case of DDEs, the structure of these curves and domains is usually
intricate, and the stable ones can be identified where the number of
roots with positive real parts is zero.

With reference to the D-subdivision method, the real and imaginary
parts of the characteristic function are obtained by substituting A = iw
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in the form
R(w) = —” = (aj, k, + ajpk,) cos(wr) + k.o sin(wr) + ¢, (22)
S(w) = =byw + (a1 k, + apy k) sin(wr) + k,w cos(wr), (23)

respectively, with @ € [0, +0).

The D-curve, as a parametric function of w, can be given by setting
R(w) = 0 and S(w) = 0. This leads to the boundary of the static
instability when o = 0, that is, when

ay ke +apk, =c, 24)

while it leads to the boundary of the dynamic instability when w > 0,
that is, when

1 2
ky(@) = —— ((¢y — 0” — aj1 by)w cos (wr)
a1zw( 0 1150 T (25)

+(ago” + ayy¢o) sin (@),

k(@) = = ((@* = ¢p) sin (w7) + (a); + ayy)o cos (7)) . (26)

1
w

When w = 0, the D-curve is a straight line in the parameter plane
(ky, k), which is denoted by red in Figs. 2 and 3. In these cases, a real
critical characteristic root crosses the imaginary axis at 0 and the cor-
responding state of the vehicle loses its stability exponentially without
vibrations in the domains where the number of unstable characteristic
roots is 1, that is, to the left of the red lines.

When o > 0, the D-curves (25)-(26) spiral outwards in the param-
eter plane (k,,k,) (see the black curves in Figs. 2 and 3); a complex
conjugate pair of characteristic roots A = +iw crosses the imaginary
axis and the vehicle state loses its stability via self-excited vibrations
of angular frequency w. The above two types of D-curves split the
parameter plane into infinite number of domains with finite number
of unstable characteristic roots within these domains. In the stable
domains (see dark grey regions in Figs. 2 and 3), this number is 0.

The number N of unstable characteristic roots is calculated by
means of the formula

r
N =1+ Y (=Dfsgn S(p,). 27
k=1
where p; > -+ > p, > 0 are the positive real zeros of R(w). This formula
is a special case of the stability criterion derived in Stepan (1989) for
delayed oscillators like (17).

4.2. Stability charts for the completely linearised delayed model

The geometric data a and b in Table 1 and the cornering stiffnesses
of the linear tyre model given in Table 2 can directly be used as the
parameters of an understeer characteristic since

Cra—C,b=—48673Nm <0, (28)

as it is shown by formula (10). The longitudinal speed is selected
for the challenging large value of u = 35m/s, while the radius R of
the cornering manoeuvre is considered to be large enough to satisfy
the small steering angle condition in (9), which is assumed in the
completely linearised model.

The stability charts in Fig. 2 are presented for this parameter setup.
If there were no time delay in the stability control, the gains k. k,
could be increased to any large positive values (see panel (a) in Fig. 2).
However, as the time delay increases, the stable region starts shrinking
as shown by panels (b)-(f) in Fig. 2. Note that the stable parameter
region survives even for unrealistic large delays like = = 55, which
is due to the fact that the understeer case is always stable in the
completely linearised model even without stability control.

The oversteer characteristic is modelled by adjusting the user scal-
ing factor Ag, in (A.4) and (A.5) (see Appendix) in a way that the
cornering stiffnesses at the front and at the rear are increased and
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decreased by 40%, respectively, to have C; = 170490N/rad,C, =
63486 N /rad, which results in

Cra—C.b=11457TNm > 0. 29

This oversteer characteristic is used in the stability charts of Fig. 3.
The longitudinal speed is the same as in the understeer case, which is
chosen intentionally for

u=35m/s >u, =21.13m/s (30)

to create unstable uncontrolled oversteer characteristic in accordance
with (16).

Fig. 3 presents the corresponding stability charts. For small time
delays ¢ < 0.2s, the structure of the stability charts is practically
the same as in the understeer case, although the stable regions get
somewhat smaller as the delay increases. For even larger delays, the
stable region disappears. A critical time delay 7. exists where no
control gains k,, k. can be selected which could stabilise the system for
7 > 7. The exact value of this critical delay can be calculated by means
of the tangent of the D-curve given by (25) and (26) as the angular
frequency @ — 0. This tangent should be larger than the tangent of the
static straight line boundary given by (24) (see the red straight line in
Fig. 3):
dk, . dk, /dw ap,

lim — = > = 31
prait) dk, prait] dk, /dw ay @D
This calculation results in the condition:

a —byr? + 21 a
2, 0 = T2 (32)

ap COT2 —2b01’+2 ap
which leads to the necessary condition for the time delay:

by — /b3 — 2¢g

T<t,=—— " —0691s, (33)

o
where b, = Tr A < 0 and also ¢, = det A < 0 according to the oversteer
case given in (30). Consequently, no stable region exists in panel (f) of
Fig. 3 where 7 > 7.

5. Delayed stability control for the non-linear vehicle model

With considerations of the non-linear tyre force and the effect of
large steering angle, the structure of the non-linear equations is given
as

o| _ | F(v,r)
= el o0

which is obtained from (1) after the substitution of the lateral tyre
forces F, and F,, in (3) and the slip angles in (2).

Understeer and oversteer cases are modelled by constructing the
normalised tyre/axle characteristic curves of vehicle handling diagram
derived in Pacejka (2005). As shown in Fig. 4, a 10% loss of tyre-road
contact coefficient y is considered by means of the reduction of the
scaling factor 4, in (A.2) (see Appendix) either at the front or at the
rear axle relative to the maximum reference value of 1: for understeer,
s =09 and p, = 1, while for oversteer, y; = 1 and y, = 0.9 are used,
respectively. Accordingly, the loss of force capability at the front axle
will lead to understeer as the front tyre force saturates before the rear
one, while the opposite case will lead to oversteer.

The desired vehicle state (v, ry) is an equilibrium point correspond-
ing to input steering angle 6 and longitudinal speed u, where the
location and type of this equilibrium are accurately acquired by the
means of phase portraits as conducted in Bobier-Tiu et al. (2019).

The uncontrolled system stability can be checked with the help of
the linearisation of (34) at (v, r(). This leads to the calculation of the
eigenvalues of the Jacobian

JF(v,r) JdF(v,r)
— av oo ar  lwy.ro)
A=1o6w.ny a6, (35)
ov (vg,rg) or (vg,ro)
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Tyre force characteristic curve
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Fig. 4. Tyre force characteristic curves for different contact coefficients u. The front
and rear tyres characteristic curves (red and black curves, respectively) are slightly
different even in this normalised form due to the different nonlinear dependences (A.1)
and (A.2) on the vertical loads F;, and F,.. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

that cannot be presented here in closed algebraic form as it was done
in the completely linearised model in (13). However, checking the real
parts of the eigenvalues can be done as it was presented in (14)—(16)
in case of complete linearisation.

By combining the non-linear vehicle model in (34) and the stability
controller with time delay in (7), the non-linear controlled dynamic
model with feedback delay is

o= Laon] o] 0
F G(v,r) M, (1)

To analyse the dynamics of this system, the same procedure is
followed as in case of the completely linearised model, however, no
closed form analytical expressions can be obtained here due to the
complexity of the non-linear mathematical expressions. The equilibria
(vg, ry) remain the same as in the uncontrolled non-linear model (34),
but the linearisation at these points leads to intricate transcenden-
tal characteristic functions like (21). Still, the corresponding stability
charts provide guidance for the selection of the optimal control gains
in the presence of certain unavoidable time delays in the control loop,
and the corresponding phase diagrams provide a clear representation
of the optimised dynamics of the controlled system.

5.1. Fastest settling signals in the presence of time delay

Small initial perturbations of the vehicle system decay in the fastest
way if the largest real part of the infinitely many characteristic roots
has a minimal negative value:
min{kirll%{(mReﬂk} =: -{<0. 37)
In this case, the state variables settle according to e~¢" where the decay
rate ¢ has the unit 1/s. The best robustness against the small initial
perturbations can be provided by maximising the value of { > 0
by means of the optimal selection of the control gains. This can be
achieved with the analysis of the characteristic functions calculated at
the desired equilibria.

The characteristic function is obtained from the linearised system
like (18) where the coefficient control matrix B is the same as in (19),
and the system coefficient matrix A must be substituted by the Jacobian
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of (36), which is the same as in case of (34). Introduce the shifted
characteristic exponent

A=i+¢, ¢>0. (38)

Clearly, the stability condition for A is equivalent to the condition
Rei < —¢. The shifted characteristic exponents A satisfy

DA C) 1= A2 = (by + 20)A — (ay k, + aok, + Ck,)e €T

o (39)
+h A€V ep + byl + 7 =0,

where the dependence of the characteristic function D on the decay
rate ¢ is also emphasised in the arguments of D.

In what follows, the stability charts are presented, and also the
control gains are optimised within the stable regions for realistic time
delays in a way that the decay rate ¢ is maximised, that is, the
controlled vehicle system settles at the desired state in the fastest way
for small initial perturbations.

5.2. Stability charts and control gain optimisation for maximum decay rate
in the non-linear delayed model

By repeating the same derivation for D(}; ¢) in (39) which was
performed in the completely linearised delayed model, the static and
dynamic stability boundaries can be constructed with { = 0. The
corresponding stability charts are presented in Figs. 5 and 6 where the
stable domains are denoted by shaded regions. The driving inputs are
selected as follows: the steering angle 6 is set to 0.2 rad for understeer,
and 0.1 rad for oversteer, while the longitudinal speed u is set to 15m/s
in both cases. The time delays are chosen to be the realistic values
of 0.1s, 0.2s, 0.3s, and some exaggerated values of 0.4s, 0.5s in
understeer, and some extreme values of 1.5s, 2.0s, 3.0s in oversteer
that is clearly impossible in practice and here for completeness of
theory.

Virtual static and dynamic boundaries can be calculated from (39)
with ¢ > 0 decay rates where Red < 0, that is, where Red < —(.
Within the stable domains, the grey-scale refers to these smaller and
smaller regions where the decay rate ¢ is larger and larger. Clearly, at
a certain maximum value of ¢, , the stable regions for 4 will disappear,
which means that no control gains can be found such that Red < =«
for all the characteristic roots 4. In other words, the optimal control
gains k, ., k, . can be calculated where the controlled non-linear system
settles locally at the desired state in the fastest way against initial
perturbations.

As it can be seen in Figs. 5 and 6, the maximum decay rate depends
on the time delay in the control loop. For relatively small delays, it is
obtained as in the completely linearised delayed model by means of
(31) and (32). Accordingly, we have the condition

fim By S/ @
ay +¢

-0 dkv 0—0 dkv/dw (40)

where k,(w;¢) and k.(w;¢) are calculated in the same way as (25) and
(26) but with the real and imaginary parts of the extended character-
istic function D(1;¢) in (39). This leads to the condition

€ < G = 5o (~tho + 4= 72— dep) 48 ). )

which means that the maximum available decay rate is ¢, at a given
value of time delay, where b, = Tr A < 0 and also ¢, = det A > 0 with
Jacobian A given by (35). Nevertheless, this condition (41) exists only
when

O<r<f*:=; (42)

\/8¢o — 202

where b(z) < 4c, fulfils for the Jacobian matrix A with the given
parameters of the vehicle. As it is shown in Fig. 7, these critical values
* of the delay are at 0.3169s for understeer that could be reached
in practical cases and causing a massive decrease in system stability,
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Fig. 5. Stability charts for control gains in the non-linear delayed model of understeer vehicle for u = 15m/s and 6 = 0.2rad with various time delays r and decay rates {, where
the grey-scale areas refer to increasing ¢ and corresponding decreasing settling times. In case of the three upper panels, the maximum decay rate ¢, is given by (41): (a) 7.934
1/s, (b) 5.869 1/s, (¢) 6.502 1/s, while in panel (d) and (e), ¢, is given by (44): (d) 5.444 1/s, (e) 3.987 1/s. Note the change of scales in the figures; panel (f) presents an

enlarged section of panel (e).

and at 1.1373s for oversteer meaning that practically it cannot get
breached.

For time delays = > 7*, the lower panels of Figs. 5 and 6 show that
the achievable maximal decay rate exists within a loop of the virtual
stable region. Consequently, &, can be calculated from the conditions

dk
=" d = (43)
which lead to

sin(tw)

(—boi_,’r + by —cpT + 2L — O+ Tcoz)

+ cos(tw)(byt +2{t—-2)=0,

sin(tw) ( “4

C(by + &) — @ (byt + 287 — D+ ¢)
— cos(to) (E(by + ) + ¢y —w?) T =0.

These two equations define the parameter points where the virtual
stability boundary curve has a peak. Egs. (44) can be solved for ¢,
and for the angular frequency w where the system is just at the limit
max{Red} = —{,... The corresponding maximal decay rates are shown
in Fig. 7 for ¢ > t*.

It is counter-intuitive to observe that the fastest settling signal can
be achieved by increasing time delays for ¥ < v < r*, where 7, =
0.224 s for understeer and 7, = 0.793 s for oversteer. While the shortest
time delay usually presents the best control performance, the time delay
T* presents an optimum point if the time delay r cannot be set below #
(see Fig. 7). Similar observations can be found in Hu and Wang (2002)

and Yan et al. (2019), where examples are presented for improving
stability properties by increasing the time delay.

5.3. Numerical simulations with control gains optimised for fastest decay
rate

For the system (36) of DDEs, numerical simulations are conducted
with history functions to verify and check the control dynamics in the
time domain under selected gain sets. While the system parameters are
kept at the same values as in Tables 1 and 2, and the driver’s inputs
are the same as in case of Figs. 5(b) and 6(b) where the time delay
7 is fixed at 0.2s. Accordingly, two sets of control gains are selected:
parameter points A, C;, D, in Fig. 5(b) for understeer, and A,, B,, D,
in Fig. 6(b) for oversteer.

The time history of the system state variables v and r are simulated
and plotted in Fig. 8 by means of Matlab DDE23. The vehicle state
before external perturbations is considered at its stable equilibrium v,
and ry, and the small impact-like perturbations around the steady yaw
rate r( are introduced at the time instant t = 0s:

N {U(t) =—-0.428m/s, t € [-,0],

(1) = 0.568rad/s, 1 € [-7,0), r(0) = 0.4rad/s
. {v(t) =-1.343m/s, t € [-,0],

(1) = 0.369rad/s, t € [-7,0), #(0) = 0.5rad/s

The setup of these perturbations corresponds to the scenarios that
usually cause instability in the two types of steering characteristics as
discussed in (5) and (6).
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Panel (a) in Fig. 8 presents the time history of v and r in case of
understeer. Clear differences can be observed in the dynamic responses
of the state variables in case of the three selected sets of gains. The
system with gains at A, corresponds to the signals settling to the
equilibrium at about 6s after a series of state fluctuations. The settling
time to the equilibrium decreases by half to 3s with gains at C;, and
only slight vibrations are generated in this case. The gains at D, are
close to the ¢{-optimised gains (k, ., k, ) and accordingly, the signals
settle the fastest way without oscillations.

The case of oversteer is presented in panel (b) of Fig. 8. The system
with gains at D, is close to the {-optimised gains (k, .k, ), and it
converges to the equilibrium much faster than in the cases of control
gains selected at B, or A,. Note that in the {-optimised case, there
seems to be some time lag in the response function of the lateral speed v
compared to the yaw rate signal r. This can partly be explained with the
small value of k, . relative to k, . and by the fact that the yaw stability
control is much more crucial than the lateral speed control in oversteer
vehicle.

5.4. Phase plane analysis of the non-linear delayed model

The trajectories in the phase planes (f,r) are presented in Figs. 9
and 10 for understeer and oversteer, respectively, when the same set
of system parameters is used as introduced in the previous subsection
for the numerical simulations with small perturbations. According to
the theory of DDEs (Insperger and Stepan, 2011), the presence of the
history of the state variables implies that the trajectories may cross each
other in the phase plane. Still, this does not contradict to the existence
and uniqueness of the solutions, it is only a consequence of the fact
that the phase space of delayed systems is infinite dimensional and the
phase plane represents only its two dimensional projection that still
provides an appropriate overview of the global dynamic behaviour of
the system.

The phase plane of the delayed system in understeer vehicle with
control gains selected in Fig. 5(b) at A, B, C,, D, corresponding to
different decay rates ¢ are plotted in panels (a), (b), (c) and (d) of
Fig. 9, respectively. It can be observed that around the stable equilibria,
the delayed system is getting more and more robust locally against
small perturbations with the increase of the decay rate ¢. Compared
to the phase planes of the uncontrolled understeer dynamics presented
in Bobier-Tiu et al. (2019), the spiralling of the trajectories of small
perturbations with the control gain set A still results in a long recovery
time of the desired vehicle state, but it is increasingly better with the
gain sets B; and C;, while the oscillations almost fully disappear at D,.

However, in this understeer case, two new unstable saddle points
appear in the global phase plane when the control gains are selected
at C, and D,. The existence of these two unstable points destroys the
global stability of the understeer vehicle, and it essentially shrinks the
domain of attraction of the desired state. With the increasing decay
rate ¢ in Fig. 9(c,d), the saddle point, having the same yaw rate as
that of the stable state, starts getting closer and closer to the desired
state, which makes it very sensitive even for small perturbations and
the corresponding cornering manoeuvre is likely to fail. The reason
why the control gains can cause the loss of global stability under large
perturbations in understeer vehicle will be discussed in the next section.

The case of oversteer vehicle is presented in panels (a), (b), (c) and
(d) of Fig. 10 with control gains selected in Fig. 6(b) at A,, B,, C,
and D,, respectively. Compared to the phase planes of the uncontrolled
oversteer dynamics presented in Bobier-Tiu et al. (2019), the most
relevant observation is that the two unstable saddle points disappear
and the controlled oversteer vehicle becomes globally stable. As it can
be seen in Fig. 10, the globally stable spiral point gradually turns into a
stable node with the increase of the decay rate ¢ from O to 4 1/s, which
means that the system converges globally to the desired state without
vibrations within a short recovery time.

5.5. Control gain optimisation for global stability

As it is shown in Fig. 9 for understeer cases, the domain of attraction
shrinks as the decay rate ¢ increases. Accordingly, the control gains
must be optimised by keeping the balance between global stability and
fast signal decay.

In order to estimate the size of the domain of attraction around the
desired stable equilibrium, introduce the measure

€ =1n|ﬁs _ﬂu|,

where g, denotes the side slip angle of the stable point S, and g, denotes
the side slip angle of the unstable saddle point U having approximately
the same positive yaw rate as the desired stable point (see Fig. 9(c,d)).

For an understeer vehicle with time delay r = 0.2s, Fig. 11 presents
an overview of the different e-levels of the domains of attraction in
the plane of the control gains (k,, k) where the different {-levels of the
decay rate are also visualised. The optimal control gains that guarantee
global stability and best decay rate are located at the grazing point of
the green area I and the green D-curve with ¢ = 2.1 1/s. This globally
optimised point is found at k, o, = —0.02rad/(ms), k; o, = 2.12 1/s.
The corresponding phase plane is plotted at the right bottom panel of

(45)
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Fig. 11 which shows the result of the trade-off between global stability
and fastest decay rate.

Note that global stability seems to be ensured when the stability
control of the oversteer vehicle is optimised for the decay rate ¢ (see
Fig. 10). As the numerical results show, there are no other equilibria
apart from the stable spiral/node, and there is no trace of any other
attractor in the phase space. This can also be explained physically by
the fact that the ¢-optimised control gains are obtained at positive
values of gain k, that helps to produce the required negative control
torque as explained by formula (6). On the contrary, the {-optimised
negative gains k, somewhat deteriorate the global stability of the
uncontrolled understeer vehicle as shown by formula (5), although
they help to reduce the many large oscillations of the uncontrolled
understeer vehicles in case of large steering angles 4.

6. Conclusions

This paper presents the analysis of the effect of time delay on vehicle
stability control systems, and the control gains are also optimised in
the presence of realistic time delays. A standard 2-dimensional vehicle
handling model is established with the experimentally fitted PAC-2002
tyre model and the parameters of an SUV car.

10

A fully linearised model is considered first with small steering angles
where simple closed form expressions can be obtained and the method-
ology of the stability analysis of the delayed system is introduced.
This is then extended to the non-linear model both for understeer and
oversteer cornering manoeuvres.

After the construction of the stability charts in the plane of the
control gains, ¢-optimisation is carried out to provide the maximal
achievable decay rate ¢, that is, to achieve the shortest settling time
to the desired state. The phase space analysis of the delayed non-linear
system provides information about the domain of attraction of the
desired states. As the final step of control gain optimisation, the trade-
off between decay rate maximisation and global stability is presented,
which is an especially relevant issue in case of controlled understeer
vehicles.

The main conclusions are summarised as follows.

1. The incorporation of realistic time delays in the model of vehicle
stability control draws the attention to the essential effect of the
delay on the dynamic performance of VSC: the stable control
parameter region shrinks with increasing time delay. While in
understeer cases, there always exist control parameter combina-
tions that provide stability for any large delay (see Figs. 2 and
5), there exists a critical time delay . for oversteer vehicles
above which no stable control parameter region can be found



H. Lu et al. European Journal of Mechanics / A Solids 96 (2022) 104678

1 T
¢ df rifv & ;v /
08rf, TV RPN 4 /4
wr / / /7
UL Bl Sl il iy e
4 i i i I | i b
0 vl e e \
Y I AR U \ /
E 7 \ \ \ \ \ ~ /N
S 3 \ N ORNG = &
g g 0 2 K
—_ —_ N ~ . -
- - \ - _ P, K
-0.2 |
\ > -
Mo o 1
-0.4
0.6 R=XAE == > ==
08PNy~ 47/
... . =7 )1 |t
/4 4 ~ = il
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 -1 -0.5 0
3 [rad] B [rad]
(@) A (k, =0.4 [rad/(ms)},k =0.5 [1/s]): & = 0.1 [1/s] (b) B,(k =0 [rad/(ms)].k =1[1/s]): & =1 [/s]
1 T 1
(A N A YA /) = - - X i e if v ooy - P B
081 [, 4] /Y A /o~ = s \\ 08F/, 4 # VAN | = e i
| | / / / / / < > = / / / / £ 7/ / = = - = N - < |
06 - ==~79r=r3"77) N D N . 08F =S5 7 /7~ 7=/ 7"/ == ~ |
oal] I P T N h > N\ N VY VR A/ \ . N
: | 3 N PR SO\ Y N\ 04r 1y Wl v TRz \
. S T N R LR SR R 1 NN N
0.2 R U [ SRR N (N} 1 N N Ng §
g A\ . o~ o \ \ \ g L I AN U N\ U
g 0 - = ~ 211K R W ' g 2 1 1 DT R W NN S
- _ Z200/ 2N I 1| BT DS IR ] e 21 B T T O IR
0.2 7/ |/ IR NN Y AT N I R R L
AV [N IR RRY IR A [ EEE N [ E]
-04 [ s o) totor oo ot i TS FERTEN PR FE
06 Iy aunr A A/ A/ ___7__r_l_! _7__7__?_ 1 t t t t t t t 1 t
: /Ay /Ny N B B BT B B B [ RS BRI IR B R
0.8 A - A v / ! t t It t 1 t (| It t t 1 ' i i f t o
' Y Y PRyl N VN N S ] [ T/ A ' '
1 (A ol Sy WL W I ) 1/ 4 t /4
-1 -08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1 0 0.5 1
G [rad] 3 [rad]

(©) C,(k, =0.02 [rad/(ms)],k, =2 [1/s]): £ =3 [1/s] (d) D,(k, =0.037 [rad/(ms)],k, =1.78 [1/s]): £ =4 [1/s]

Fig. 10. The delayed phase plane of vehicle system with oversteer characteristics at u = 15 m/s, y; = 1, y, = 0.9, § = 0.1rad, under different control gains configurations at
parameter points A,, B,, C, and D, in the stability chart of Fig. 6(b) respectively. Lines of maximum steady-yaw rate are drawn as black dotted lines, with variable trajectories

as blue curved lines. Green dot means stable equilibrium (node or spiral), red dots refer to unstable equilibria (saddles), the trajectories appear as blue lines. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(see Fig. 3). In case of small steering angles, this critical delay is
calculated with the tyre and vehicle parameters in formula (33)
with (15) as a function of the longitudinal speed u.

The analysis of the non-linear model shows that two types of
stable regions occur in the plane of the control gains depend-
ing on whether the time delay r is smaller or larger than the

Fig. 7 help the tuning of the control parameters with taking into
account the unavoidable time delay.

. The effect of {-optimised gains on the non-linear delayed model
is verified by numerical simulations (see the time histories in
Fig. 8, and the phase planes in Figs. 9 and 10). The analyses

boundary value z* in (42). In the first case of r < t*, the stable
region is bounded by the static instability on one side and by the
dynamic instability on the other side, while in the second case
of r > 7*, it is bounded by a loop of the dynamic instability only
(see Figs. 5 and 6). At the parameter points where the dynamic
instability boundary has a self-intersection, self-excited quasi-
periodic vibrations may appear with two frequency components
which may be a realistic scenario for understeer vehicles with
delay ¢* in the range of 0.3s.

. Based on the extended analysis of the stability charts, ¢-optimised
control gains are determined where the vehicle reaches the
desired state with maximal decay rate ¢,,,. These optimal decay
rates are calculated as a function of the time delay in the control
loop. While the general tendency of increasing delay resulting
in decreasing maximal decay rate is experienced in Fig. 7, the
counter-intuitive opposite tendency also appears in a certain
narrow delay interval (#,7*). The corresponding diagrams in

11

of the phase plane trajectories show that the global stability
of the oversteer vehicle can be achieved under ¢-optimised
gains, while in understeer case, the global stability is destroyed
with the application of the ¢{-optimised gains. By means of the
introduction of the measure (45) for the domain of attraction of
the desired steering manoeuvres, the global optimisation of the
gains is further conducted to find the fastest decay rate while
also ensuring global stability in the presence of time delay.

There are several future plans to continue this research. Since the
tyre and vehicle body parameters are all experimentally well identified,
the VSC strategies in the presence of different time delays caused by
the application of different computation and signal filtering strategies
can also be tested and the gain optimisation results could be verified.
Also, the influence of load transfer in vertical directions and the effect
of braking/accelerating in longitudinal directions could be investigated
by further extending the bicycle model applied here.



H. Lu et al.

European Journal of Mechanics / A Solids 96 (2022) 104678

D-curves optimized with ¢ [1/s] —— 0(also stability boudary) — 5 — 2.1

Areal:Only 1 focus exists:

13

k15,

w

05 0
k, [rad/(ms)]

(a) unstable (red), (b) stable (green).
Area II: (a) globally unstable (red),

(b) locally stable (color scale):

2 saddles and 1 stable focus exist.
Area III: Only 1 unstable saddle exists.

Boundary curves
separating the areas

0.5 1

Fig. 11. Control parameter optimisation for global stability in case of understeer vehicle with delay = = 0.2s. Deep red regions refer to global instability, green region is globally

stable, and the yellow-red colour scale refers to the measure e (45) of the domains of attraction in locally stable cases. The selected gains k.

vopt @nd k.., are optimised by the

D-curves of decay rate {-levels within the globally stable area, and the corresponding phase plane is given in the bottom right panel. (For interpretation of the references to colour

in this figure legend, the reader is referred to the web version of this article.)
CRediT authorship contribution statement

Hangyu Lu: Methodology, Calculations, Software, Figures. Gabor
Stepan: Conceptualization, Writing. Jianwei Lu: Funding acquisition,
Consultancy. Denes Takacs: Funding acquisition, Discussion.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Funding

This work was supported by the bilateral Research Project be-
tween China and Hungary Governments [grant no. 2020-1.2.4-TET-
IPARI-2021-00012]; National Key Research and Development Project
of China [grant no. 2021YFE0116600]; National Natural Science Foun-
dation of China [grant no. 51875150]; and partly by the National
Research, Development and Innovation Office of Hungary [grant no.
NKFI-128422, KKP 133846, and K 132477].

Appendix. Non-linear tyre models with experimentally identified
parameters

The definitions of the coefficients of the tyre model in (3) are as
follows:

_ _ Fz - FzO _
vy = Yﬂyy , df,= —F C, —Pcylﬂcy, (A1)
z0
Dy =uF.&, n=ppyu+pppdf)1=ppsr)iy, (A.2)
E, = (pgy +pEy2dfz)(l = (PEy3 +PEy47y)Sgn(0!))}»Ey > (A.3)
while the stiffness factors are calculated as
K= F,ysin(24 t z Aky s A.4
10 = Py Fro sin( F,, arctan PrnFalrs Ky (A.4)
K, = Kyo(1 - pyslr, &5, B, = K,/(C,D,), (A5)
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Table 2

Identified tyre parameters that are relevant in the current dynamic model.
Parameter Value Parameter Value
Pey 1.267511 PEys 0.1150635
Poyi 0.900306 Prys —6.953865
Poy 0.16748 Piyl —25.738824
Poys —0.431849 Pryo 3.27049
Pey —0.346205 Prss —0.005365
PEp -0.10367 PH v -
F, [N] 4500 y [rad] 0.04
C; [N/rad] 121778 C, [N/rad] 105810

where the normal vertical load F,, and the camber angle y are used
during the experimental identification. These values and the further
experimentally identified tyre parameters p _are given in Table 2. The
factors ¢ and A are used for user scaling, their default values are 1.
The so-called shift factors are not presented here, they are considered
to be zeros. The tyre-road contact coefficient y is identified during the
experimental tests as a general reference value that is about 1, and
later it is adjusted by the user scaling factor 4, to create different tyre
force characteristics for the front and the rear tyres in order to simulate
(non-linear) understeer or oversteer cases.
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